
MATHEMATICS OF COMPUTATION, VOLUME 30, NUMBER 136

OCTOBER 1976, PAGES 772-795

Reorthogonalization and Stable Algorithms for
Updating the Gram-Schmidt QR Factorization

By J. W. Daniel, W. B. Gragg, L. Kaufman and G. W. Stewart*

Abstract. Numerically stable algorithms are given for updating the Gram-

Schmidt QR factorization of an m X n matrix A (m > n) when A is modified by

a matrix of rank one, or when a row or column is inserted or deleted. The algo-

rithms require O(mn) operations per update, and are based on the use of elemen-

tary two-by-two reflection matrices and the Gram-Schmidt process with reorthog-

onalization. An error analysis of the reorthogonalization process provides rigorous

justification for the corresponding ALGOL procedures.

1. Introduction. In many applications, most notably to linear least squares prob-
lems, it is important to have the QR factorization of a real m x n matrix A (m > n)
into the product of an m x n matrix Q with orthonormal columns and an n x n upper
triangular matrix R. When A has full rank n the QR factorization is classically com-
puted, in O(mn2) multiplications and additions, by the Gram-Schmidt process; the diag-
onal elements of R may then be taken positive and, with this normalization, the fac-
torization is unique. In cases when the rank of A is nearly deficient the columns of

Q, computed by the Gram-Schmidt process in the presence of rounding error, can devi-
ate arbitrarily far from orthonormality.

The purpose of this paper is to provide numerically stable and relatively efficient
algorithms for updating the Gram-Schmidt QR factorization of A when a row or column
is inserted or deleted, or when A is modified by a matrix of rank one: A < A = A
+ vuT, where u and v are (column) vectors. The paper may thus be considered sup-
plementary to the important survey [2] of Gill, Golub, Murray and Saunders. It is
emphasized that a principal aim of [2] was to update the complete orthogonal decom-
position of A. This requires storage of an m x m orthogonal matrix and O(m2) arith-
metic operations per update. The algorithms presented here arose from the desire to
efficiently extend a stable modification of the secant method [4] to nonlinear least
squares problems. The knowledge of an m x n Q then suffices, and we normally have
m >> n. The storage is thus reduced to 0(mn), and we shall show that the same is
true of the operation counts.

The principal tools which we shall use are the Gram-Schmidt process, with

Received March 17, 1975.

AMS (MOS) subject classifications (1970). Primary 65F05; Secondary 15-04, 15A06, 62-
04, 62J05, 65F20, 65F25, 65G05, 90C05, 90C30.

* This research was supported in part by the Office of Naval Research under Contracts
N00014-67-A-0126-0015 and N00014-67-A-0314-0018, by the Air Force Office of Scientific Re-

search under Grant AFOSR 71-2006, and by NSF MCS 75-23333.
Copyright (? 1976, American Matliematical Society

772

STABLE QR UPDATES 773

reorthogonalization, and elementary two-by-two reflectors (or Givens matrices). The

Gram-Schmidt process is in essence an algorithm for appending columns. Reorthogonal-

ization is used to insure numerical stability, that is to preserve (near) orthogonality of

the columns of the computed Q. There are actually two distinct algorithms for the

general rank one update, and each has implications for the special updates. One algo-

rithm, which will not be described in detail, uses Givens matrices to obtain an inter-

mediate problem of appending a column; after the Gram-Schmidt process is applied the

initial transformations must be undone. We shall present a slightly more efficient algo-
rithm which uses the Gram-Schmidt process first, and then Givens matrices, to reduce

the problem to that of appending a row. We then observe that the algorithm given in

[2] for appending a row applies also to the Gram-Schmidt QR factorization. The algo-

rithm for the stable deletion of rows is essentially the reverse of that for appending a

row, but the arguments involved seem rather subtle.

In the next section we give a heuristic discussion of the reorthogonalization pro-

cess. This is followed in Section 3 by a description of the updating algorithms. Sec-

tion 4 is devoted to an error analysis of the reorthogonalization process. This allows

us to set certain parameters in the ALGOL codes of Section 5, where some numerical

results are also presented.

We shall use the Householder notational conventions [5] , with the addition that
Rm xn denotes the set of real m x n matrices. Also, 11 *1 refers to the Euclidean vec-

tor norm, as well as to its induced matrix norm: IIAII= max{IlxII: llxil = 1} for A
E Rmxn

2. The Gram-Schmidt Process, With Reorthogonalization. We first recall the

basic step of the Gram-Schmidt process. Let

Q = (q,5q2 ... 5qn) E RmXn (m >n)

have orthonormal columns, so that Q TQ = In, and let v E Rm. We seek vectors q E

Rm, r E Rn and a scalar p so that

(Q v)= (Q q)(O) and QTq = o.

The last column is v = Qr + qp and multiplication by QT gives r = QTV. Setting v'

qp, we now have

vI = v - Qr =(I QQ T)V.

If m > n, we also insist that llqll = 1 which gives p = liv'll, and then

q=v'/p if pO0.

The process fails if p = 0, in which case v = Qr is in the range of Q and (Q, v) =

Q(I, r) has rank n. In particular, when m = n the matrix Q is orthogonal so we must

have

q=O and p=O.

774 J. W. DANIEL, W. B. GRAGG, L. KAUFMAN AND G. W. STEWART

The process, without normalization, uses 2mn multiplications and about the same num-
ber of additions.

If m > n and the process fails, then, theoretically, any unit vector orthogonal to
the range of Q could be substituted for q. The corresponding numerical problem is
more subtle. If the process is carried out in the presence of rounding error, it is un-
likely that p would vanish exactly, but it could be quite small. The process is designed
to force Q Tv' to be small relative to llvil, and indeed our error analysis will show this
to be true. But even if IIQTV,II - elvil, with e small, if p is extremely small, then the
normalized vector q = v'/p would satisfy only IIQTqll = eiivii/p; and the error relative
to llvil could be very large. Thus, there could be a catastrophic loss of orthogonality in
the computed q.

To rectify this situation one reasons as follows. If liv'll/IvIl is small, then numeri-
cal cancellation has occurred in forming v'. Thus, v', as well as q, are likely to be in-
accurate relative to their lengths. If one attempts to correct v' by reorthogonalizing it,
that is by applying the process again with v replaced by v', then one gets (approximately)

s = QTvI and v" = v' - Qs = v - Q(r + s).

Comparing this with the desired result, v' = v - Qr, one sees that v' should be replaced
by v"' and r by r + s. If llv"ll/llv'll is not too small, then v" may be safely scaled to
give a satisfactory q. Otherwise the process is repeated.

Thus, if i7 is a parameter satisfying 0 << K? < 1, for instance ti = 1/x/2, we have
the tentative algorithm:

r = 0, v0 = v,

for k = 1, 2, 3, . . . until iivkil > qllvkl||

| Sk = QTVk-1 rk = rk-l + Sk

u k =QSk, vk = Vk-1 uk

r = rk p = iVkii, q = A/p.

It is unlikely that this iterative reorthogonalization process would fail to terminate, for
ultimately rounding errors would force some iterate vk to have substantial components
(relative to llvk-1 i) orthogonal to the range of Q. However, this is only a "probabilis-
tic" argument and so in Section 4 we shall give a completely rigorous alternative.

3. The Updating Algorithms.
Givens Matrices. A Givens matrix is a matrix of the form

G=(y): y= cos a = sin 0;

G is orthogonal and symmetric and det G = -1. If x = (1, t2)T, then Gx is the reflec-
tion of x in the line which meets the axis tj > 0 in the angle 0/2. The angle 0 can be
chosen so that

Gx = re1 = (ir, O)T, - ?ixii.

STABLE QR UPDATES 775

If t2 = 0, we take 0 0 so that y =1 and a = 0. Otherwise, we compute

, = maxt 1{1 1, 12 1}, Ifri = p sqrt [(1 /p)2 + Q2/P)2

= +II I =1/ and a= 2Ir

This co'mputation of Irl = llxil avoids artificial problems of overflow and underflow; a

corresponding device will be used to compute the length of any vector. The sign of -

remains unspecified.

The computation of z = Gy, y = (ri1, 1q2)T, may be done rather efficiently as

follows. First compute vo = /(1 + y), and then

y <r _7j ('Y171 + 017T2

\ t2 or \CX -7 /\72 V(\ l1712 + t1) -72/

If G is applied to a 2 x n matrix in this way, the cost is 3n multiplications and addi-
tions, instead of the usual 4n multiplications and 2n additions. Finally, the sign of r
is chosen so no cancellation occurs in the formation of v:

(1, > 0,

r = Irl sign t1, sign EE4

Of course, by a trivial modification, G can be chosen so Gx is a scalar multiple of

the second axis vector e2 = (0, 1)T. Also, we shall actually use n x n Givens matrices

Gi 1 which deviate from the identity only in the submatrix G formed from rows and

columns i and j.
General Rank One Updates. Let

A-QRCRmXn (m>n), uERI and vCRm.

Observe that

/R\
A -A + vuT = (Q, v) .

Step 1. Apply the Gram-Schmidt process (with reorthogonalization) to obtain

/I r\

(Q, v) = (Q, q)(), QTq = 0, liqll = 1.

\O p/

We then have

A = (Q, q)[(7)+ (u QR

and Q has orthonormal columns.
Step 2. Choose Givens matrices Gn,n+ i, Gnil,n * ... * G1,2 so that

GA G1G,2 * Gn,n + rel.

776 J. W. DANIEL, W. B. GRAGG, L. KAUFMAN AND G. W. STEWART

That is, choose the G1ii+ 1 (i = n, n - 1, . - . , 1) to successively introduce zeros into the
vector from the bottom element through the second. The matrix G is orthogonal. The
(n + 1) x n matrix

G()G 2 . .G + f+(T)-R'

is upper Hessenberg (= almost triangular), and so is

GR = R' +? euT A

Moreover, by the orthogonality of G, the matrix QGT = Q 1 * G1 2GQ has
orthonormal columns and A = QR.

Step 3. Choose Givens matrices H1,2 H2 3,.. . ,Hn +l to successively annihi-
late the subdiagonal elements of R, giving

HR-Hn,n+l * 2 * 12 oT)

with R upper triangular. Then

QHT QH1,2 . . Hn,n+1 -(Q, q)

has orthonormal columns and

A = (Q,)T) QR

as required.
This algorithm uses approximately 2(1 + 3)mn + 3n2 multiplications and addi-

tions, where l is the number of orthogonalization steps (1 - 1 reorthogonalizations).
The algorithm appears not to be valid for m = n, but in this case it actually simplifies.
For then Q is orthogonal, and so

T), ~ T A = Q(R + rT), r=Q V.

Steps 2 and 3 apply, with one fewer Givens transformation each, to achieve the result.
Deleting a Column. Let

A = QR E Rm xn (m > n)

and let a be the kth column of A, so that

A (A1, a, A2) Q(R1, r, R2).

Then

a=Qr and A-(A1,A2)=Q(R1,R2)-QR.

The matrix R is upper Hessenberg. For instance, when n = 6 and k = 3, we have

STABLE QR UPDATES 777

X XX X
R- x x x x ,

x x x

x x

x
where x denotes a possibly nonnull element and the elements not indicated are null.
Thus, only Step 3 is needed, and this simplifies. We choose Givens matrices Hk,k+ 1'

Hk+ 1 k+2, s, H o-I ,n SO that

Hkk+1R=(\ HR =
Hn_l,n .. * Hk,k+ jR toT

with R upper triangular. Then

QHT= QHk,k+ 1 Hn-.,n

has orthonormal columns and A = QR, as required.
This algorithm uses about 3 [m + (n - k)/2] (n - k) multiplications and additions

together with mk more if, as will be done in our ALGOL code, the deleted column vec-
tor a = Qr is retrieved.

Inserting a Column. Let

A-(A1,A2)=Q(R1,R2) QR ERmX(n-1) (m>n)

with A1 E Rm X(k-1) and A2 E Rm X(n-k). If the vector a E Rm is inserted "between"
A1 and A2, it becomes the kth column of

\R1 0 R2
A-(Al1, a, A.) =(Q, a) OT o 0T

We apply Step 1 to get

Ir\
(Q, a) =(Q, q) QTq=O, llqll= 1.

i0 p/
Then

1 r R2

where R is of the form (n = 7, k = 3)
x x x xx x x

I x x x x x xI

x x x x x

R= x x x x .

x x x

x x

x

778 J. W. DANIEL, W. B. GRAGG, L. KAUFMAN AND G. W. STEWART

Step 2 is consequently simplified and Step 3 is not needed. We choose Givens matrices

Gn-1,n Gn-2,n-1, *. . , Gk k + 1 so that

GR-Gkk+l Gn-l,nR R

is upper triangular. This fills only the diagonal positions in columns n, n - 1, . . ., k + 1.

Then

QG = QGn-1,n G.k,k+1 -Q

has orthonormal columns and A = QR, as required.

This algorithm uses approximately 21mn + 3 [m + (n - k)/2] (n - k) multiplica-

tions and additions.
Inserting a Row. Let

A = QR E R(m-l)xn (m>n) and aERn.

Without loss of generality we may append aT to A. Then

_ A) Q 03(R)

Here Q already has orthonormal columns so Step 1 can be avoided. So can Step 2

provided Step 3 is altered only slightly. We choose Givens matrices H1 n+ 1 H2,n+ 1

,Hn n + l so that

HR--Hn,n+1 **H,n+R <oT

with R upper triangular. Then

QHT QH1 ,n + 1 ... Hn, n + 1 =_(Q, q)

has orthonormal columns and A = QR, as required.

This algorithm uses approximately 3(m + n/2)n multiplications and additions.

Deleting a Row. Again, we may delete the last row. Let

A AJ) _(Q)R Rmxn (m > n)

with

(QT, q)()=Q Q+ qq=In.

Now also,
Q R

STABLE QR UPDATES 779

Apply Step 1, the Gram-Schmidt process (with reorthogonalization), to obtain

VqT) qT 0 pJ

The first iteration simplifies, since

r=(QT,q) q,

and then

v'
) (>) ()q

=
(T -qTq>

Since q2+a2 -1, we have

p2 = lQqql2 + (I _q Tq)2 q qT(I - qq T)q + (I -q Tq)2

= 1 -q Tq = up.

If p A 0, then a = p. If p = 0, then q Tq - 1; and since q Tq + O2 < 1, we have o=
p in any case. Step 1 thus provides

/Q O\ /Q q\t q\
Vq 1 J VqT p)90 ywith q p = -Qq.

Hence, we have

/ A 0 /Q q- \R\

We now choose Givens matrices Hn,n+, n-1,n+1 H1,n+i so that

(q , p)T =(q
T

p)Hnjn+ 1 * Hl,n+
=

(?T, r)

Moreover, r = + 1 since orthogonal transformations preserve length. Now the matrix

(qT P) (T T

has orthonormal columns and so q = 0. Finally, we have

H(oT) Hl,n+l -T

with R upper triangular, and

(aT) (oT +I X T) = T

as required.

780 J. W. DANIEL, W. B. GRAGG, L. KAUFMAN AND G. W. STEWART

This algorithm uses about 2(1 + I)mn + 3n2/2 multiplications and additions,

where 1 is the number of orthogonalization iterations.

4. Construction of the Orthogonalization Code.
LEMMA 4.1 (ON MATRIX BY VECTOR MULTIPLICATION). Let A e Rm n, x n Rn

and let y e Rm be the result of the algorithm

Yo = 0

for k = 1, 2, ..., n

LYk = Yk-1 + ak4k + ek,

Y =Yn

in which the (error) vectors {ek}n' satisfy

|| ek || < ailyk- 1 11 + 3ll ak 1l 1tk'

Then y = Ax + e with

Ilell < [(n - 1)oa + min {ml /2 nl/2},] (1 + a)n1 ItAII lixll.

Proof. By induction on k,
k k

Yk =Axk + x e,, Xk - .. **k' 0 * *, ?) , lYkil I IAXkll + lie1!!,
1

k
Ilek+ 1ii< ?ailAXkll + (3llak+ 1ii itk+ 1! + ce e

and

k+ 1 k

1j lleII < allAXkll + (3llak+1ll '1k+ 1 1+ (+ a)Z1 lel

k k+1

1 1

? (1 + c a)k kAx!! + 1 llall l 11

The result now follows from
n

e = ? ej, lAxI < IIAII llxill < IIAII lixl

and

IIlaIIl Itjl 6 IIAIIFIIX11, IIAIIF - Ilaj112) < minfml/2, nll2}IIAII.

Applications. If y, a and t are floating point vectors and scalar, respectively, and

y= y + at + e' is computed in floating point arithmetic [10], [1], [6] then a typical

element satisfies

STABLE QR UPDATES 781

= i + ct + e' = ?X(1 + 6") + ct(1 + 6)(1 + 6'),

where 6, 6' and 6" are rounding errors; thus

e' = 776" + ac(6 + 6' + 66').

We assume rounded arithmetic operations and denote the basic machine unit by

60 (=2 t). Quantities which are in practice only slightly larger than 60 will be denoted
by 61, 62, 63, . .. ; in the same vein we put 6-1 o/(1 + 60). When I = 1 (vector
addition), we have 6 = 0.

a. (Weak) Single Precision (possibly large relative error in addition). Here we
have 161 6_1, 16'! < 36o/2 and 16"! < 36o/2. Thus,

Ic'! ? 261o77i + 26bicl 6 E -6 (1 + 5-1

Hence, in Lemma 4.1 we can take

ilekil < 2 Ol6lyk-1 + 2 0 kll 14

to obtain y = Ax + e with

llell <I [3(n - 1) + 5 min{m1/2, n1/2}]5 16 A llxll

and

61 -6o (1 + 2 0

b. Inner Products Computed in Double Precision (followed by rounding to single
precision). If y is the unrounded vector, then Lemma 4.1 applies, with

Ilekil < 32 o(liyk-1i1 + Ilakll Itki)'

to provide a bound for IIY - Axll. The double precision vector y is then rounded to
yield the single precision vector z for which Ilz -yll < 601lyll. From the triangle in-
equality it follows that z = Ax + f with

lif!! < 0 IlAxll + 2 (n + min{ml/2, n112})6 IIA llixil

and

62 -62(1 +) (1 + 3 52

These bounds, which do not appear in [10], [11], [1], [9] for instance, are

basic to our further analysis.
In the following the Wilkinson symbols fi and f12 indicate the use of (weak) single

precision and accumulated inner products, respectively.
THEOREM 4.1. Let Q E Rm xn (m > n) and v E Rm have floating point entries,

and let the vectors {v k}I be computed from the algorithm:

782 J. W. DANIEL, W. B. GRAGG, L. KAUFMAN AND G. W. STEWART

V0 =V,

for k = 1, 2, 3,....

s k
fl2(QTVk-),

u k
fl(Qsk),

vk = k-1 _ k

if

QTQ-I=+E, IIEI6, < 'y(1 + e)1 /2

2 26 and :3e + 2(n/2+ 1)'26,

where 6 (in practice only slightly larger than the basic machine unit 60) is defined be-

low, then the following inequalities hold:
1. IIQ TVk + 1 11 < allVk 11 + OIIQ TVk 11;

2. IlVk + 1 11 < [lvk 112 _(1 e)IIQ TVk 112 1/2 + oilVk l1 + OIIQ TVk 11;

3. Ilv l 11 > [llvkll2 _(1 + e)llQTvkll2] 112 -allkll _ -IIQTVkI

provided YIIQTVkll < lvkll.

Likewise, if f12 is replaced by fl, and

a > _(ml /2 + 1)2'y26.
2

Proof We may suppose k = 1. We elaborate only on the f12 case, putting r

st and u u'. From the applications of Lemma 4.1 we have

r=QTV+c, u=Qr+e, v'=v-u +f,

with

II cl 6 OIIQTVII +3-(m + n1 12)26 ll Qll livI,

62 -2(1 + 3) I +) tlell < } (3n + 5n 1/2 - 3)6 11 Q1I llrll

and

Llfll < -fllull < llull).

Elimination of u from the above equalities and inequalities gives

r=QTv+c, v'=v-Qr+g,

with g e - f and

3 3n + 5nl/2
11911 < 3 6

1lVII + 3n,+5n,
I 1l Qll 11rll.

(We have actually used a slightly sharper bound for Ilell to avoid introducing 64.)

Eliminating r in a similar manner, we find v' = (I - QQT)v - h with h-Qc + g,

STABLE QR UPDATES 783

lihil 363411VII + 3(n l/2 + 1)2 6 5 11Qll1 II Q TVI,

64 60 + (m + nl12'2 (l + 3n +5n12 (+

and

65 o(1 + 60)(I + 2 6).

In the single precision case a corresponding rather precise bound is

llhll <3 26611Qll[(m1/2 + 1)21IQ,, Iv,, + (n 1/2 + 1)21IQTvII]

with

(3)m + 3n + Sn2 662

and we now define

6 max{64, 65, 66}-

Since

QTV, = QTV-(I + E)QTV _ QTh = _EQTV - QT h,

we obtain the first bound by taking norms and using IIQII < y. The remaining bounds

follow from

Illlv'll - IlIV _ QQ
T

)VII I < IIhII,

II(, QQT)vII2 = !V!12 _ IQ Tv!I 4(QTV)TEQTV

and

I(Q TV) TEQ TV I< IIEE11 IIQTv||2

This completes the proof.

The quantities 6k'60 (k > 0) are nondecreasing functions of 60, m, n and e. For

instance, if 60 < 5 -10-7, m < 105, n < 105 and e < 1 we have 6 < 1.1 Ig

We shall now apply Theorem 4.1 to construct the orthogonalization code. We

shall assume that the numbers ae, (and e are not extremely large. Restrictions on their

size will be expressed in the form of certain "r-conditions" which will hold for a wide

range of practical cases. We shall see that the (provable) attainable limiting precision

of the reorthogonalization process is determined by the (minimal) value of ae. In prac-

tice this is about 36o/2 when accumulated inner products are used and 3m60/2 other-

wise.

If v $ 0 and IIQTv1I/Ilvll ? / ? /y, then Theorem 4.1.3 implies

784 J. W. DANIEL, W. B. GRAGG, L. KAUFMAN AND G. W. STEWART

The right side is positive if and only if

;(t) = ((2 + .?,2)1/2
2 + 2ac: - -(1- _a2) < 0.

Equivalently, by Descartes' rule, we must have ae < 1 and

2

[(1 -ca2}y2 + 32]1/2 + a4

the positive zero of 4. Hence, by Theorem 4.1.1, ae < 1 and t < imply

llQTV,11 -ac + j3~

IIQ 191 < t1 -)-1 _(,Y)2] 1/2_of_:

The function

fp: [0, 0) t , +), + c-/(1 -

is strictly increasing with reciprocal inverse function

1 _ ot3(1 + +)2+{I12(1 +)2 +'Y2[2 _a2(1 +)2 }1/2

<(-1)(t)
I

t2 -a2(1 + t)2

rhe fixed points of <p satisfy

7r(t) =2 [(.YS)2 _ 1] + (1 + t)2(a + 03)2
= t2p(t) + X(t) = 0,

and the polynomial X has positive coefficients. By Descartes' rule 7r can have at most
two positive zeros. Now Tr(O) > 0 and Tr(t) > 0. For the limiting values ae = ,B = 0
ind y = 1 we have Tr(t) = t2(t2 - 1) and the derivative Tr'(Q) = 22(2 2 - 1); hence,

rr'(1/\/2) = 0 and Tr(1/\2) = 1/4 < 0. For "general" values of ae, ,B and -Y we insist
that Tr(1/,\/) < 0, that is

= - + (3 + 2/V)(/ + 2)2 < 1.

rhis T-condition implies that <p has exactly two fixed points t* and t** for which t <

t* < t** < t. If the algorithm of Theorem 4.1 is started with any vector vo 0 satis-

fying

||QTVOIIIIIVOII <_ to < *

then it follows from the monotonicity and continuity of <p that

IIQ Tvk 1111Vk 11 <$ -0 -)t (k o)-

For practical values of ae, (3 and e the difference equation 4k+ 1 = Pk) is extremely
"stiff'.

To set a sharp termination criterion we shall ultimately need a rather precise up-
per bound t+ for t*. For now suppose that

thaove > terwith 0 > w

as yet unspecified. From the above we may terminate the iteration when

STABLE QR UPDATES 785

[oivlk- 1I1 + 3IIQTVk-lII/lllvkll < +

since the left side is at most 4k. Equivalently, we may terminate when

liv 1 ii + CoIIQTvk-l 11 < IIk, _ =/.

The termination parameters (c, 0) will be specified by the user. Increasing ae corre-

sponds to decreasing c, or e, and a weaker accuracy requirement.
We now investigate the possibility of nontermination. If IIQTvklI/llvkII > + then

IIQTVk-lII/IIVk-lII > 0(-l)(+) (0 < 1 < n),

where p(-l) is the lth compositional power of <p(-l). In other words

ll k-111 < lIQTVk-1ll/1~)(a+) (0 < 1 < n).

Then, by induction using Theorem 4.1.1,

t+llvkll < IQTVOII j [+

In particular

i+iv kll/livOli I pk p
=

+ a0

Hence, if p < 1 and the termination criterion continually fails to be satisfied, then vk
0.

Our explicit expression for <p(-l) provides the means for studying p. The appar-
ent difficulty in guaranteeing that p < 1 lies in the fact that if t+ is extremely close
to t* (=-e), then the denominator

(-+)2 _ a2(1 + t+)2 = a2 [02 _ (1 + Oc)2]

can become extremely small. We now choose 0 conveniently to make the term in
brackets equal to unity. This gives

0 = ((2 - a 2)1/2 + c)/(1 - t2)

which is about \/X for small oa. Some simple estimates then show that p < 1 provided

T2 -0 [(1 + C/2)a + (0 + 1)(1 + c)3] < 1-

In fact p < r2, so in practice p is substantially smaller than unity. Finally, the condi-
tion that + > t* is implied by 7T(Oc) < 0, which reduces to

T 3=(1'+ 6)4a2 + O(2 + Oa)(1 + Oc)23 < 1.

The practical reorthogonalization process will thus either terminate quickly or
else we shall soon have lIvkll < allvy 11, where a > 0 is a parameter somewhat smaller

than the basic machine unit 60 (for instance a = 60/10). In this case vk is certainly
indistinguishable from rounding error; and if vk $ 0, we can legitimately replace vk by

llkIle,, where the axis vector e1 is chosen so the lth. row eTQ = (QTe1)T of Q has
minimal length. (If vk = 0, we replace vk by e1, but put r = r k and p = 0.) Our

786 J. W. DANIEL, W. B. GRAGG, L. KAUFMAN AND G. W. STEWART

final, and most stringent, i-conditions will guarantee the convergence of this alternative
procedure.

First, we have
m

ItIQI2 = E IIQTeII12 > mIIQTetiI2;
1

and then,

m 1/2
IIQ Te III < IIQIIF < n /2 IIQII < yn 1/2 .

That is

IIQTell/llell < y(n/m)1/2.

We now obtain a lower bound, t-, for t**. Since r(t**) 0, we have, from the

quadratic formula,

1 + {J - 4 [(q + Pt**)y(1 + t**)] 2}1 /2

2y2

Since t** < < 1/-y < 1, y < 1 + e/2 and N/l7-> 1 -> 1 for 0 < 7 < 1, we find

t** > [I - 4(2 + e)(a + O)2 1/2

The alternative procedure thus converges if y(n/m)l/2 < -, or equivalently

I4 (1 + 6)2n/m + 4(2 + e)(a + o)2 <1

For practically small values of a-, 1 and e this i-condition is surely satisfied if m is suffi-
ciently greater than n. However, when reorthogonalization is applied, we always have
m > n and some trivial rearrangement shows that the alternative procedure converges
for all such m if

4-2(n + I)[e + 4(a +)21 1.

For practical values of a and ,B this is roughly equivalent with 2(n + 1)e < 1.
For minimal ac (= 3-y6/2 or 3(m1/2 + 1)22y26/2) the numbers ik are increasing

functions of SO, m, n and e. The i-conditions are all satisfied if, for instance, So 6
5 - 1i-0, n < 103, n < m < 104 and e < 104. Also, we can choose e = n maxleiIl,
so in these cases we have e < 10-4 provided maxlejI < nb0.

Although we shall not pursue the matter in detail, we wish to show how Theo-
rem 4.1.2 can be used to obtain an upper bound for IIQTvII/IIIV! from a lower bound
for lIv'/lllIvIl. Thus, assume ca, 1 and e are sufficiently small, fix 7i so that ct + 1y <
6 1, and suppose

n S |V'||||V|| t _IIQTVIIIIIVII.

Then

n? [1 -(1-e)<]112 +a+1 ,

STABLE QR UPDATES 787

or equivalently

(1 e + 32) 2 2
- a)f3 - [1 - ()2] < 0.

Hence,

IIQTVII (n_-a)g + {(l -e)[I -(na)2], + P2} 1l2

llvll ~ ~ ~ - +
02

As a, (B and e tend to zero we have - (1 - ri2)1/2. Theorem 4.1.1 then yields
the bound

IIQ v'II< a + a + (1 p2)1/2
llv'll Iq 7

This indicates that our termination criterion with

C O0, 0 = 1/n, 0 ?< l,

is not unreasonable, especially when ae and ,B are of comparable size. On the other
hand, when accumulated inner products are used, we may have a << ? for large n and
we would have to take 7r _ 1 to guarantee a limiting precision of t+ = /oa.

5. ALGOL Procedures and Numerical Results. The principal practical results of
this paper are summarized in the following package of ALGOL procedures.

comment: ALGOL procedures for updating Gram-Schmidt QR factorizations;

begin
integer base; real lnbase;
real omega, theta, sigma; label fail;
comment: These are global entities. base and Inbase, the base of the machine arith-

metic and its natural logarithm, are used in the procedure length. The others are
relevant to the procedure orthogonalize. omega and theta are used to specify the
termination criterion and sigma is used to test for restarting. See Section 4. The
error exit fail is taken if termination is not obtained in a reasonable number of
iterations;

real procedure length(n, x);
value n; integer n; real array x;
comment: Computes the accumulated Euclidean length of x [1 : n] .

Can be coded in machine language for greater efficiency;
begin

integer k; real s, t; double ss, tt;
ss := 0; t := 0;
for k := 1 step 1 until n do t := max(t, abs(x [k]));
if t > 0 then
begin

t := base t entier(ln(t)/lnbase);
for k := 1 step 1 until n do
begin

788 J. W. DANIEL, W. B. GRAGG, L. KAUFMAN AND G. W. STEWART

tt :=x[k]/t; ss :=ss + ttt 2
end k

end;
s := ss; length t x sqrt(s)

end length;

procedure orthogonalize(m, n, Q, v, r, rho);
value m, n; integer m, n; real rho; real array Q, v, r;
comment: Assuming Q [1 : m, 1: n] (m > n) has (nearly) orthonormal columns this

procedure orthogonalizes v[1: m] to the columns of Q, and normalizes the result if
m > n. r[1 : n] is the array of "Fourier coefficients", and rho is the distance from
v to the range of Q. r and its corrections are computed in double precision. For
more detail see Sections 2 and 4;

begin
Boolean restart, null; integer i, j, k; real rho 0, rho 1, t;
double ss, qq, vv; real array u[1 : m], s[1 : n];
label again, standardexit;
restart := null := false;
for j:= 1 step 1 until n do r]:= 0;
rho := rhoO := length(m, v);
k := 0;

again:

comment: Take a Gram-Schmidt iteration, ignoring r on later steps
if previous v was null;

fort := 1 step 1 until m do u[i] := 0;
for j 1 step 1 until n do
begin

ss 0;

for i 1 step 1 until m do
begin

qq Q[i, j]; vv := v[i]; ss := ss + qq x vv
end i;
s[j]:= t :=ss;

forti 1 step 1 until m do u[i] u[i] + Q[i, j] x t
end j;

if m null then
for j := 1 step 1 until n do r[j] r[j] + s[j];
for i := 1 step 1 until m do v[i] := v[i] - u [i];
rho 1 := length(m, v); t length(n, s);
k := k + 1;
comment: Treat the special case m = n if necessary;
if m = n then

begin
for i := 1 step 1 until m do v[i] 0;

STABLE QR UPDATES 789

rho 0; go to standardexit
end;
comment: Test for nontermination;
if rho 0 + omega x t > theta x rho 1 then
begin

comment: Exit to fail if too many iterations;
if k > 4 then go to fail;
comment: Restart if necessary;
if i restart A rho 1 < rho x sigma then
begin

restart := true;
comment: Find first row of minimal length of Q;
for i :=1 step 1 until m do u [i] =0;
for j := 1 step 1 until n do
for i := 1 step 1 until m do u[i] u[i] + Q[i, j]t2
t :=2;

for i := 1 step 1 until m do
if u[i] < t thenbegin k := i; t :=u[k] end;
comment: Take correct action if v is null;
if rho 1 = 0 then begin null := true; rho 1 := 1 end;

comment: Reinitialize v and k;
for i := 1 step 1 until m do v[i] := 0;
v[k] := rho 1; k := 0

end;

comment: Take another iteration;
rho 0 := rho 1; go to again

end;
comment: Normalize v and take the standard exit;
for i := 1 step 1 until m do v[i] := v[i] /rho 1;
if i null then rho := rho 1 else rho := 0;

standardexit:
end orthogonalize;

procedure computereflector(x, y, c, s);
real x, y, c, s;
comment: Computes parameters for the Givens matrix G for which

(x, y)G = (z, 0). Replaces (x, y) by (z, 0);
begin

real t, u, v, mu;

u := x;v :=y;

if v = 0 then begin c := 1; s := 0 end
else
begin

790 J. R. DANIEL, W. B. GRAGG, L. KAUFMAN AND G. W. STEWART

mu := max(abs(u), abs(v));

t := mu x sqrt((u/mu) t 2 + (v/mu) 1 2);
if u < 0 then t := -t;
c := ult; s := vlt; x := t; y := 0

end
end computereflector;

procedure applyreflector(c, s, k, 1, x, y, j);
value c, s, k, 1; integer k, 1, j; real c, s, x, y;
comment: When called with x := x [j] and y := y [j], this procedure replaces the two

column matrix (x [k:l], y [k:l]) by (x [k:l], y [k:l])G, where G is the Givens matrix
determined by c and s. Uses the Jensen device [8];

begin
real t, u, v, nu;
nu := s/(1 + c);
for j := k step 1 until 1 do
begin

u := x; v := y; x := t := u x c + v x s; y := (t + u) x nu - v
end j

end applyreflector;

procedure rankoneupdate(m, n, Q, R, u, v);
value m, n; integer m, n; real array Q, R, u, v;
comment: Updates the factorization A = Q[1 : m, 1 : n]R [1 : n, 1: n] (m > n)

when the outer product of v[l : m] and u[l :1n] is added to A;
begin

integer i, j, k; real c, s, rho; real array t[1: n];
orthogonalize(m, n, Q, v, t, rho);
computereflector(t[n], rho, c, s);
applyreflector(c, s, n, n, R [n, n] , rho, j);
applyreflector(c, s, 1, m, Q[i, n], v[i], i);
for k :=n - 1 step - 1 until 1 do
begin

computereflector(t [k], t [k + 1], c, s);
applyreflector(c, s, k, n, R [k, j], R [k + 1, j], j);
applyreflector(c, s, 1, mr 2[i, k], Q[i, k + 1], i)

end k;
for j := 1 step 1 until n do R[1, j] := R[1, j] + t[1] x u[j];
fork:= 1 step 1 until n - 1 do

begin

computereflector(R [k, k], R [k + 1, k], c, s);
applyreflector(c, s, k + 1, n, R [k, j], R [k + 1, j], j);
applyreflector(c, s, 1, m, Q[i, k], Q[i, k + 1], i)

end k;

STABLE QR UPDATES 791

computereflector(R [n, n], rho, c, s);
applyreflector(c, s, 1, m, Q[i, n], v[i], i);

end rankoneupdate;

procedure deletecolumn(m, n, Q, R, k, v);
value m, n, k; integer m, n, k; real array Q, R, v;
comment: Updates the factorization A = Q[1 : m, 1 : n]R [1: n, 1 : n] (m > n) when

the kth column of A is deleted. Returns the deleted column in v[1 :m];
begin

integer i, j, 1; real c, s, t;
for i := 1 step 1 until m do v[i] := 0;

for 1 := 1 step 1 until k do
begin

t :=R[I, k];
for i := 1 step 1 until m do v[i] := v[i] + Q[i, 1] x t

end 1;
for 1 k step 1 until n - 1 do

begin

computereflector(R [1, 1 + 1], R [l + 1, 1 + 1], c, s);

applyreflector(c, s, 1 + 2, n, R [1, j], R [1 + 1, j], j);
applyreflector(c, s, 1, m, Q[i, 11, Q[i, 1 + 1], 1)

end 1;
for j := k step 1 until n - 1 do

forii 1 step 1 until jdoR[i, j] :=R[i, j+ 1];
for i :=1 step 1 until n do R [i, n] :=0;
for i := 1 step 1 until m do Q[i, n] 0

end deletecolumn;

procedure insertcolumn(m, n, Q, R, k, v);
value m, n, k; integer m, n, k; real array Q, R, v;
comment: Updates the factorizationA = Q[1 : m, 1: n - 1]R[1 n - 1, 1: n - 1]

(m > n) when the vector v [1 : m] is inserted between columns k - 1 and k of A;
begin

integer i, j, 1; real c, s; real array u [1 : n];
for j := n - 1 step -1 until k do

for i := 1 step 1 until j do R [i, j + 1 :=R [i, j];
forj := k + 1 step 1 until n do R[j, j] =0;
orthogonalize(m, n - 1, Q, v, u, u [n]);
for i =1 step 1 until m do Q[i, n] := v[i];
for 1 :=n - 1 step -1 until k do

begin

computereflector(u [1], u [1 + 1], c, s);
applyreflector(c, s, 1 + 1, n, R [1, j], R [l + 1, j] j);
applyreflector(c, s, 1, m, Q [iy 1], Q [i, I + 1], i)

792 J. W. DANIEL, W. B. GRAGG, L. KAUFMAN AND G. W. STEWART

end 1;
for i := 1 step 1 until k do R [i, k] u [i]

end insertcolumn;

procedure insertrow(m, n, Q, R, k, u);
value m, n, k; integer m, n, k; real array Q, R, u;
comment: Updates the factorization A = Q[1: m - 1, 1: n]R[1: n, 1: n]

(m > n) when the vector u [1 : n] is inserted between rows k - 1
and k of A;

begin
integer i, j, 1; real c, s; real array v[1: m];

for i 1 step 1 until m do v[i] := 0; v[k] := 1;
for 1 1 step 1 until n do
begin

for i m - 1 step -1 until k do Q[i + 1,1] Q[i, 11; Q[k, 1] 0;

computereflector(R [1, 1], u [1], c, s);

applyreflector(c, s, 1 + 1, n, R [1, j], u [j] , j);
applyreflector(c, s, 1, m, Q [i, 1], v[i] , i)

end 1
end insertrow;

procedure deleterow(m, n, Q, R, k, u);
value m, n, k; integer m, n, k; real array Q, R, u;
comment: Updates the factorization A = Q[1 : m, 1 : n]R [1 : n, 1: n] (m > n)

when the kth row of A is deleted. Returns the deleted row in u [1: n];
begin

integer i, j, 1; real c, s, t; real array v[1: m];

for i :=1 step I until m do v[i] :=0; v[k] 1;
orthogonalize(m, n, Q,.v, u, t);
for i :=k step 1 until m - 1 do v[i] :=v[i + 1];
for 1 := n step -1 until 1 do
begin

for i k step 1 until m - 1 do Q[i, 1] Q[i + 1, 1]
compu tereflector(t, u [1], c, s);

applyreflector(c, s, 1, n, u [j] , R [1, j] , j);
applyreflector(c, s, 1, m - 1, v[i], Q[i, 1], i);

Q[m, 1] 0
end 1;
forj := 1 step 1 until n do u[j] t x u[j]

end deleterow;

procedure QRfactor(m, n, A, Q, R);
value m, n; integer m, n; real array A, Q, R;
comment: Computes a Gram-Schmidt QR factorization, Q[1 m, 1 n]R[1: n, 1 n],

of A [1 : m, 1 : n] (m > n);

STABLE QR UPDATES 793

begin
integer i, k; real array v[l: m];

for k 1 step 1 until n do
begin

for i := 1 step 1 until m do v[i] := A [i, k]; insertcolumn(m, k, Q, R, k, v)

end k

end QRfactor;

fail:
end Gram-Schmidt QR updating procedures;

Extensive tests with small matrices have been made to check the logic of our

codes. We report in detail only the following larger tests with the view of obtaining

numerical experience with the inevitable problem of error propagation.

Experiment 1. To test the numerical stability of the procedure orthogonalize, as

well as its dependence on the termination criterion, we have constructed numerical

Gram-Schmidt QR factorizations, QnRn, of the Hilbert sections

Hn -(,/(i + j -l)) E Rloo In J n = l, 2, . . . , 1 00.

Since this is done by successively appending columns, no Givens transformations are

used and the propagation of rounding errors is due solely to the orthogonalization pro-

cess. Moreover, the (double precision) Frobenius norms

IIQnRn -Hn IIF and IIQnQ-In IIF

are easily updated. A slight and trivial extension of our error analysis shows that, if

the recommended termination pair (co, 0) is used and the final scale factor p is com-

puted using an accumulated inner product, then we have

,IQ TQn-nlI < Kn 1/25 ntQnQ -In IF ?Kl0

with K essentially independent of m and n. Our experiments were done on a Burroughs

6700 computer, for which 65 = 0.5/812. Table 1 gives an indicative selection of the

quantities

dn -IlQnRn - Hn 11FIln 20, enk - IlQn Qn - I||FIn I 6 O

for three different termination criteria (k = 1, 2, 3): (1) (co, 0) as prescribed in Sec-

tion 4 with minimal oa and e = IIQ,TQn -n"F' (2) (co, 0) (0,) and (3) (co, 0)

-(0, 10).
TABLE 1

n d e d n n en n n dn en

20 0.26 0.90 0.25 1.08 0.25 1.7

40 0.27 1.03 0.26 1.68 0.27 54.0

60 0.26 0.93 0.26 1.42 0.27 44.1
80 0.23 0.90 0.23 1.28 0.24 38.2

100 0.21 0.95 0.21 1.25 0.22 34.2

794 J. W. DANIEL, W. B. GRAGG, L. KAUFMAN AND G. W. STEWART

In cases one and two, for n > 2 and with only one exception, the number of
orthogonalization iterations was constant at two for small values of n and three for
large n. The jumps from two to three iterations occurred at n = 12 and n = 38, respec-
tively. Case three was similar except that only one iteration was used for n = 2, and
the jump then occurred earlier, at n = 26. A fourth run was made restricting the num-
ber of iterations to two (one reorthogonalization). For this we had

en > 100 for n >45,

that is all orthonormality in the computed Qn had been lost.
In earlier runs we had set the restart parameter a equal to the basic unit 5 .

From about fifty calls to the procedure orthogonalize two restarts were observed to
occur. Since restarting is expensive we have thus recommended a somewhat smaller
value of a, in order to give the probabalistic heuristic of Section 2 a fair chance. No
restarts were observed in our experience with the code as given (a = 60/10).

Experiment 2. We now consider updating the numerical QR factorizations,

QmRm, of the Hilbert sections

Hm (1/(i + j1)) E Rm1

by appending and dropping rows. After obtaining the initial factorization of H1o as
above, that is with the procedure QRfactor, we used insertrow to append rows up to
m = 50 and then deleterow to successively drop the last row and return to m = 10.
The recommended termination parameters were used consistently, with minimal a and
e = IIQ,Qm - ? IIF. Table 2 lists typical values of the magnified error norms

dm IQmRm Hm1IF/60, em -tQmQm 11011FI650

which no longer can be computed recursively. For ascending m we have also given the
quantities

dm 1n(dm)I1n(m), e m ln(em)/Iln(m).

TABLE 2

m | dm dm em em

10 0.7 -0.13 3 0.54
20 10.4 0.78 37 1.20
30 18.9 0.86 65 1.23
40 32.1 0.94 88 1.21
50 51.9 1.01 123 1.23
40 52.0 122
30 51.6 120
20 50.6 118
10 47.6 106

STABLE QR UPDATES 795

For ascending m these results indicate error growth of roughly m in dm and m5/4 in
em. For descending m both errors are moderately decreasing.

Departments of Computer Science and Mathematics
University of Texas at Austin
Austin, Texas 78712

Department of Mathematics
University of California, San Diego
La Jolla, California 92093

Department of Computer Science
University of Colorado
Boulder, Colorado 80302

Department of Computer Science
University of Maryland
College Park, Maryland 20742

1. GEORGE E. FORSYTHE & CLEVE B. MOLER, Computer Solution of Linear Algebraic
Systems, Prentice-Hall, Englewood Cliffs, N. J., 1967. MR 36 #2306.

2. P. E. GILL, G. H. GOLUB, W. MURRAY & M. A. SAUNDERS, "Methods for modifying
matrix factorizations," Math. Comp., v. 28, 1974, pp. 505-535. MR 49 #8299.

3. PHILIP E. GILL, WALTER MURRAY & MICHAEL A. SAUNDERS, "Methods for com-
puting and modifying the LDV factors of a matrix," Math. Comp., v. 29, 1975, pp. 1051-1077.

4. W. B. GRAGG & G. W. STEWART, "A stable variant of the secant method for solving
nonlinear equations," SIAM J. Numer. Anal., v. 13, 1976.

5. ALSTON S. HOUSEHOLDER, The Theory of Matrices in Numerical Analysis, Blaisdell,
New York, 1964. MR 30 #5475.

6. DONALD E. KNUTH, The Art of Computer Programming. Vol. 2: Seminumerical Al-
gorithms, Addison-Wesley, Reading, Mass., 1969. MR 44 #3531.

7. CHARLES L. LAWSON & RICHARD J. HANSON, Solving Least Squares Problems,
Prentice-Hall Ser. in Automatic Computation, Prentice-Hall, Englewood Cliffs, N. J., 1974. MR 51
#2270.

8. HEINZ RUTISHAUSER, Handbook for Automatic Computation. Vol. 1/Part a: Descrip-
tion of ALGOL 60, Die Grundlehren der math. Wissenschaften, Band 135, Springer-Verlag, New
York, 1967.

9. G. W. STEWART, Introduction to Matrix Computations, Academic Press, New York, 1973.
10. J. H. WILKINSON, Rounding Errors in Algebraic Processes, Prentice-Hall, Englewood

Cliffs, N. J., 1963. MR 28 #4661.
11. J. H. WILKEINSON, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

MR 32 #1 894.

